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V E R T I C A L L Y  T O  A N  I N T E R F A C E  B E T W E E N  L I Q U I D  M E D I A  
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The nonlinear initial-boundary-value problem of a contour approaching an interface between 
two liquid media is considered. A solution is constructed using a previously developed numer- 
ical method that is based on reducing the original problem to a system of integrodifferential 
equations for singularities simulating liquid and rigid boundaries and a function that describes 
the interface between the media. Calculation results for the perturbations generated by a cir- 
cular cylinder approaching a free surface are presented. The dependences of the flows obtained 
and the hydrodynamic characteristics of the contour on the Froude number are estimated. 

Solving nonlinear unsteady problems of the motion of a contour near interfaces between media has 
become possible owing to the development of computational hydrodynamics. In this area, the problem of 
a contour rising vertically to an interface between media is a problem of special interest, which has broad  
practical  applications. Two-dimensional potential flow about a circular cylinder approaching a free surface 
was considered in [1]. The  cylinder in the state of deep submersion is gradually accelerated from zero to 
constant  vertical velocity. The  generalized vortex method developed in [2, 3] was used to obtain the elevation 
of the free surface and the streamlines. Calculation results, including the pressure distribution along the 
contour,  were presented for several values of the velocity. The results were compared with calculations for 
a cylinder approaching a rigid wall and a cylinder moving in an unbounded fluid. In [4], the boundary-  
element method was used for calculation of the vertical (up and down) mot ion of a cylinder under a free 
surface. Passing through the free surface, the body carries a fluid layer. This phenomenon is explained by 
the presence of inertial forces. Ttm two-dimensional nonlinear unsteady problem of surface waves generated 
by vertical motion of a cylinder was considered in [5]. The initial stage of the process was studied. The  
method  of solution implies that  the condition of no separation of the flow about  the cylinder is s t r ict ly 
satisfied. The velocity potential,  the displacement of the free surface, and the coordinates of points of the 
cylinder were presented as power series in time. The  shape of the free surface at the initial stage of  the 
process was calculated for a cylinder moving upward to the free surface. The horizontal motion of a cylinder 
and the motion at an angle to the horizon were also studied. The same problem was considered in [6] using 
a dipole approximation. The  motion of a circular cylinder at constant velocity to a free surface of a heavy 
fluid was studied in [7, 8]. Calculations of the free-surface shape were compared with the data obta ined by 
asymptot ic  expansions in [5]. The  method proposed in this work makes it possible to calculate flows at  any 
t ime before water exit of the body. We should note that  this problem was considered previously [9] using the 
complex boundary element method proposed in [10]. The process in which a body  approaches a free surface 
at  a short distance was studied. In [11], the water exit of a body was investigated for large Froude numbers.  
T h e  finite volume-method was used for discretization of Navier-Stokes equations. The deforalations of  the 
free surface produced by a circular cylinder were calculated using a multilevel grid scheme. Calculations of 
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the free-surface shape and flow about  the cylinder at various times were given. 
The aim of the present paper is to study the problem of a circular cylinder rising vertically to a free 

surface using the numerical method developed previously. Particular attention is given to evaluation of the 
effect of the Froude number on the flow about the cylinder. 

We consider the problem of a contour L0 which rises vertically to the interface L1. In the semi-infinite 
layers DI and D2 (DI is the lower layer), the fluid is ideal, incompressible, heavy, and homogeneous. The 
coordinate system is chosen in such a mariner that the x axis coincides with interface L1, which is not 
perturbed at the initial time. We introduce the following notation: 9 is the acceleration of gravity, Pk is the 
density of the layer Dk, and R is the radius of the cylinder. 

~Ve shall use singularities to model the liquid and rigid boundaries. To this end, we consider a vortex 
sheet with intensity "Tl(sl, t) along the interface Ll (t) and a layer of sources with intensity q(s0, t) along the 
contour Lo(t). We assume that 3'i (+oe,  t,) = 0. In the domains Dl (t) and D2(t), the fluid motion is described 
by the fimction 

1 / 7,(s , , t )dsl  1 / q(so,t)dso 

Ll( t )  Lo(t) 

The system of integrodifferential equations corresponding to the kinematic and dynamic boundary 
conditions at the interface L1 (t) and the condition of no normal flow through the contour Lo(t) has the form 
[12] 

az ( s l )  _ Vl(z(sl),t), z(sl) C Ll(t); (2) 
Ot 

Ot = p* - g Imz(s l )  8 ' 
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"~s(Sj,t) = Re (Vj(z(sj), t)ei~ z(sj) �9 Lj(t) (j = 0, 1); 

q(s0, t___._~) _ Im ((V0(z(s0), t) - (/Lo(t))eiO~176 z(s0) �9 L0(t); (4) 
2 

iUosin(zrv/2), 0 ~< 7- ~< 1, (5) 
VL~ = iUo, ~- > 1. 

Here Vj(z(sj),t) is defined by formula (1) for z(sj) �9 Lj(t) (j = 0, 1), Oj(sj,t) is the angle between the 
tangent at the point z(sj) E Lj(t) and the x axis (j = 0, 1), VLo(t) is the complex velocity corresponding to 
the gradual vertical acceleration of the circular cylinder from zero to a constant velocity, and v = tUo/R is 
the dimensionless time. 

In the donmins D1 (t) and D2 (t), the perturbations of the velocity and the interface damp at infinity: 

lira (/(z,t) = 0, lim h n z ( s l )  = 0, z(sl) �9 Ll(t). (6) 
x ~ : t : c r  ' x ~ : t : c ~  

There are no perturbations of the velocity and the interface at the initial time: 

Imz(sl)  = 0, Z ( S l )  �9 LI(0), 71(sl,0) = q(so, O) = 0. (7) 

Solving system (1)-(7), we determine the hydrodynamic pressure p(s0, t) at points of the contour z(so) 
and the total hydrodynamic forces Rx and Ry: 

80 (o/ 
p(so, t) - f(t)  = -pl  '~  Vo~(~o,t)dao- Re(f/Lo(t)Vo(z(so),t)) + 

0 

t)?) 
2 ; (8) 
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f 
Rx - iRy = i / (p(s0, t) - f ( t ) ) e  -i~176176 dso. (9) 

io(t) 
Here f ( t )  is a certain function of time only. 

The system of integrodifferential equations (2)-(4) is nonlinear, and this is due to the following two 
factors: 1) the intensities of the singularities "yl(Sl, t) and q(so, t) are included in a nonlinear fashion in tim 
boundary conditions; 2) the shape of the interface L1 (t) is unknown and is to be found by solving the system. 
This introduces certain difficulties into the solution of this system. 

Equations (2) and (3) are integrated with respect to time using a Runge-Kutta-Fetberg scheme of 5th 
order accuracy [13]. At each time tn (n = 1, 2 , . . . ) ,  we calculate the function Gn(s~) and the points on the 
interface zn(s~)  E L~ (the superscript n refers to the function values at the n th  time step). At each time 
step, determination of ~ ( s ~ )  and qn(so) reduces to solving the following system of integral equations 

_ _  n ,n _ - - ,  zn(s?)  e L?; (10) 
2 OS'l ~ 

qn(s~ Im ( (V~(zn(so) )  - Lol J, 2 = ~n  ~eiO~(so)x zn(so) E L~. (11) 

The system of integral equations (10) and (11) was solved by the high-order panel method [14]. The 
contours L~ artd L~ were divided into the intervals t rs~li-1, snliJl (i = 1, . . . . . .  , N )  and [s0j-1, soil ( j  --- 1, , 2tl), 

Is n s n ~ and zn(s;j) E Z~ (8oj e [80j-1, s0j]) respectively. The collocation points zn(s~ *) E L~ (SLY/* e t li-1, liJJ * 
�9 ~ ~ *  . . . ,  N )  were chosen in these intervals. Equations (10) and (11) were considered at the points ~. (sl i)  (i = 1, 

and zn(s~j) ( j  = 1 . . . .  , M ) .  The interface L? in the i th  interval [sin_l, st n] and the contour L~ in the j t h  
interval [s0j-1, soil were approximated by parabolas, and tim unknown functions ~/~(s~) and qn(so) in the 
same intervals were approximated by linear functions. Discretization of the integral equations (10) and (11) 
and allowance for (1) leads to a system of linear algebraic equations for values of the functions ~/~(s~) and 
qn(so) at the ends of the intervals. After solving this system, from (1), we obtain the values of l?'~(z) at points 
of the contour and from (8) and (9), we have the distributed and integral hydrodynamic characteristics. 

Because of the symmetry of the flow domain relative to the y axis, the calculation domain was taken 
within the interval 0 ~< x / R  <~ 10. The numbers of points on the interface and ttm contour were 400 and 80, 
respectively. In the interval 7.5 ~< x / R  <~ 10, a damping layer was introduced using the technique described in 
[15] in order to suppress the waves reflected from the boundaries of the calculation domain. Kelvin-Helmholtz 
instability was prevented using the filtration procedure proposed in [16]. The derivative OG(s~, t)/Os~ in (10) 
and the contour integral in the expression for the total hydrodynamical forces (9) were calculated using cubic 
splines. We should note that the procedures and techniques described allowed us to carry out calculations 
over wide ranges of the density ratio p. and the Froude number Fr = U o / ~ / ~ ,  and with a change in the 
total energy E not exceeding 0.12%. 

Using a more general method developed to solve the problem of the vertical upward motion of a 
cylinder to an interface between two media, we considered the case of cylinder approaching a free surface of 
a homogeneous fluid (p. = 1), which has broad practical applications. At the initiM time, the center of ttm 
cylinder is located at the point with the coordinates (xc(O), yc(O)) --- (0 , -5) ,  and it begins to rise gradually 
according to the law (5). Results of the numerical simulation of the effect of the Froude number on the 
hydrodynamic forces exerted on the cylinder and on the free-surface perturbation are shown in Figs. 1-3. 

The calculation was performed up to the time 7-. at which the strong interaction between the cylinder 
and the free surface led to divergence of the numerical method. Table 1 gives the linfiting values of time 
7". for various Froude numbers Fr. For comparison, the values of 7-. obtained in [1] are 7". -- 4.24, 4.52, and 
5.80 for Fr ---- 0.2, 0.4472, 1.4142, respectively. As follows from the results presented herein, the proposed 
method makes it possible to obtain a considerable increase in 7. and to study the most interesting regimes 

of interaction of the contour with the free surface. 
Calculations of the free-surface shape at various times are shown in Fig. 1. Passing through the 

unperturbed level of the free surface, the body carries a fluid layer because of the presence of inertial forces. 
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Fig. 1. Free-surface perturbat ions produced by a circular cylinder r ising vertically. 
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Fig. 2. Free-surface elevation at the point located directly above the center  of the cylinder for 
Fr = 1.4142 (1), 0.4472 (2), and 0.2 (3). 

Fig. 3. Hydrodynamic  forces exerted on the cyl inder  rising vertically to the free surface for Fr = 
1.4142, 0.4472 (2), and 0.2 (3). 
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TABLE 1 

Fr T, i 

0.2 4 . 4 1  

0.3 4.62~ 

O.4 4.871 

0.4472 4.98 ~ 

0.5 5 . 0 7  

0.6 5.25 1 

0.7 5.361 
I 

0.8 5.45 I 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.4142 

1.5 

5.57 

5.67 

5.78 

5.89 

6.11 

6.42 

6.50 

6.69 

Thus,  at large Froude numbers, it is possible to calculate the flow about the cylinder which is above the 
unper turbed  level of the free surface, and this is observed at Fr = 1.4142. A similar flow pat tern for large 
Fr was found experimentally in [17]. We note that  the results for the free-surface shape obtained here are in 

satisfactory agreement with the data given in [1]. 
The  behavior of the free surface at Fr = 0.2 has an interesting feature. During acceleration up to t ime 

V = 1, an increase in the free-surface elevation at tile point  with the ordinate Y0 is observed. After that ,  
the elevation decreases until a certain moment and then  grows again (see Fig. 2). At the same time, for 
Fr -- 0.4472 and 1.4142 the free surface at this point increases during the entire mot ion of the cylinder. 

The  hydrodynamic force Cy -- 2Ry/(plRU 2) for the same Froude numbers is shown in Fig. 3. We 
should note that  there is an interval of positive values of Cy for Fr = 0.2 (due to buoyancy force) and the 
resistance increases sharply for all Froude numbers when the limiting times v, are approached. 

Thus, using the method developed previously, we solved the nonlinear problem of a circular cylinder 
rising vertically to a free surface: Comparison wittl known results shows that this method has a number of 
advantages. In particular, it can be used to study the regimes of strong interaction between the contour and 

the free surface in detail. 
This  work was supported by the Russian Foundat ion for Fundamental Research (Grant No. 96-01- 

00093). 
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